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ABSTRACT 

A novel method is described for quantifying average urban heat island (UHI) warming since 

1895 in contiguous U.S. (CONUS) summer air temperature data. The method quantifies the 

sensitivity of Global Historical Climatology Network (GHCN) station raw temperature to 

station-centered population density (PD). Specifically, closely spaced station pair differences in 

monthly raw (non-homogenized) TAVG (the average of daily maximum and minimum 

temperature) and PD are sorted by station pair average PD into six PD classes, and linear 

regression estimates of the temperature sensitivity to population density change (dTAVG/dPD) are 

made for each class for historical periods ranging from 1 to 21 years in length. Every one of the 

resulting six sensitivity relationships in each of 22 historical periods from 1880 to 2020 are 

found to be positive, and their magnitudes allow construction of station-average urban heat 

island temperature (TUHI) curves as a function of population density. When applied to the history 

of population changes at each CONUS station location (1895-2023) and grouped into four 

categories of station population density, the resulting TUHI warming trends range from 8% of 

observed TAVG warming for the most rural category of stations to about 65% of observed 

warming for suburban and urban categories. Across all stations the UHI warming amounts to 

22% of the observed raw GHCN warming trend, (+0.016 versus +0.072 °C decade-1). The 

method provides an independent way to quantify station-average UHI warming over time.  
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1. Introduction

The urban heat island (UHI, Balchin & Pye, 1947) is a ubiquitous feature of human

settlements, first described in The Climate of London, by Luke Howard in 1833 (Mills, 2008). 

The UHI warming effect on air temperatures is maximized at night and is mostly due to the 

replacement of vegetation and aerated soils with buildings and impervious pavement (Arnfield, 

2003). These changes alter the local day-night energy budget of solar energy gain and energy 

loss by infrared radiation, evaporation, and convective air currents compared to wilderness 

conditions (Oke, 1982).  Since the resulting warming affects the health and comfort of millions 

of city-dwelling people around the world, the UHI enhancement of global and regional warming 

trends is of increasing concern to the public, healthcare workers, urban planners, and 

policymakers (Estoque et al., 2020; Tong et al., 2021; Hsu et al., 2021; Zhang et al., 2023; Chen 

et al., 2023).  

Since most surface air temperature measurements are made in or near human settlements, and 

most of those settlements have grown over time, it is reasonable to address whether global 

warming trends calculated for land areas have been spuriously inflated. Unfortunately, 

quantifying the UHI effect on air temperature is complicated by a wide variety of contributing 

factors and how they have changed over time: population density, building height and density, 

roads and parking lots, active sources of waste heat, and settlement size and heterogeneity just to 

name a few (Hausfather et al., 2013; Peterson & Owen, 2005; Gallo & Owen, 2002; Stewart and 

Oke, 2012). It should be noted that UHI effects are much stronger in daily minimum (TMIN) than 

maximum (TMAX) temperatures, by about a factor of three (e.g. Hamdi & Van deVyver, 2011). 

Homogenization procedures are used in the adjusted version of the GHCN dataset (Menne and 

Williams, 2009; Menne et. al., 2012) which involve correcting for breakpoints in a station’s 

temperature time series relative to surrounding stations. To the extent that UHI warming is not 

uniform across all nearby stations, this is believed to remove spurious temperature trends from 

UHI in the adjusted (homogenized) dataset. 

With a few exceptions (e.g. Mitchell, 1953; Kukla et al., 1986; Scafetta, 2021) most efforts to 

determine whether the UHI has spuriously inflated land warming trends have concluded it has 

little effect (Wickham et al., 2013; Hansen et al., 2010; Parker, 2010; Jones et al., 2008; Parker, 

2006; Peterson & Owen, 2005; Peterson, 2003; Peterson et al., 1999; Gallo et al., 1999; Karl et 
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al., 1988). Hausfather et al. (2013) estimated the UHI effect in both the raw and homogenized 

versions of the GHCN dataset and found 14-21% of the rise in raw (unadjusted) minimum 

temperatures during 1895-2010 could be traced to urbanization. Others have claimed that 

homogenization procedures are not well behaved and have produced spurious effects in the 

temperature record (Soon et al., 2018; O’Neill et al., 2022; Katata et al., 2023). Given that 

homogenization adjustments correct for any source of step changes (including UHI) in a station’s 

temperature time series relative to neighboring stations, we believe it is worthwhile to isolate the 

UHI effect in the raw temperature data using an alternative method. 

We quantify the UHI signal in the spatial domain using GHCN summer monthly (June, July, 

August) raw TAVG (the average of daily maximum and minimum temperatures) and two gridded 

global population density datasets. Since this is an exploratory effort meant to establish a 

methodology for quantifying UHI effects, we restrict our analysis to the summer months, when 

UHI effects contribute to the highest urban temperatures. We are guided by the seminal work of 

Summers (1964) and Oke (1973) which showed a strong nonlinearity in the relationship between 

UHI warming and settlement population. This nonlinearity, which we will demonstrate with 

GHCN data, has important implications when comparing urban to rural temperature trends. For 

example, Oke’s reported 4th root power law relationship between nighttime temperature and 

population for cities and towns in Canada, the United States, and Europe would result in more 

warming from a rural population density increase from 1 to 10 persons km-2 than would an urban 

increase from 1,000 to over 1,700 persons km-2. This suggests the common assumption that air 

temperatures in rural locations are unaffected by urbanization is not strictly true. If rural 

locations have experienced some level of UHI warming, data adjustment methods that assume 

they can be used as a baseline for computing urbanization effects at non-rural locations might 

underestimate those UHI effects. 

Given this nonlinearity, the UHI problem would benefit from new methods for quantifying 

warming that do not depend upon the assumption that rural stations are unaffected by UHI. We 

describe such a method for quantifying the average UHI effect across thousands of stations 

representing a full range of population densities from wilderness to inner-city. Our 

reconstruction of the functional relationship between population density and UHI warming (TUHI) 

uses linear regression of closely spaced paired-station differences in temperature TAVG) against 
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differences in population densityPD). The novel feature of our analysis is the sorting of these 

many thousands of station pairs into six classes of paired-station average population density for 

linear regression. The regression coefficients represent the local slopes of the TAVG vs. PD curve 

which then allows the nonlinear functional relationship between station-average TUHI warming 

and population density to be quantified. 

2. Data and Methods

The GHCN global dataset includes over 27,000 stations with various lengths of record

operating since the late 1800s, with nearly half of those stations located in the U.S. In the time 

domain it is difficult to disentangle UHI effects from the global warming signal because the 

signals are often similar: both warming of the climate system and urbanization occurs slowly, 

over many decades. But to the extent such changes tend to be sporadic in time and space, 

homogenization techniques have been developed (Menne and Williams, 2009; Menne et. al., 

2012) which assume urbanization effects with time are not spatially uniform across neighboring 

stations and then adjust for relative temporal step changes in temperature. This constitutes the 

“adjusted” (homogenized) version of the GHCN dataset. It is beyond the scope of this paper to 

determine how much (if any) urban warming remains in the adjusted (homogenized) GHCN 

data; here we will compute UHI effects from the raw (unadjusted) version of the dataset. 

In the spatial domain it is widely recognized — even by the lay person in their daily 

commute — that urban environments are warmer than rural areas. In the United States, these 

urban areas have grown substantially since the late 1800s when temperature datasets started for 

many stations. We estimate the average spatial urban warming in the raw summer GHCN data 

across many stations using 2-station paired differences in temperature and population density to 

quantify how UHI warming changes with population (dTAVG/dPD), then we apply those 

relationships to individual station population changes over time (dPD/dt). The technique can, of 

course, be applied to other seasons besides summer. The extension of the UHI signals quantified 

in the spatial domain to UHI warming in the time domain is accomplished with Eq. 1,  

dTUHI/dt  =  [dTAVG/dPD][dPD/dt], (1) 

where TUHI is the urban heat island component of temperature, t is time, and PD is population 

density in persons km-2. Note there are two parts to Eq. 1, the first being the change in 
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temperature with population density, and the second being the change in population density with 

time. The first calculation is the most involved, with a number of required steps, while the 

second is a relatively straightforward calculation from the population density dataset. Also note 

that once a time history of dTUHI/dt is computed with Eq. 1, then time integration over the period 

of the instrumental record leads to a time series of just the UHI component of temperature, TUHI.  

We quantify spatial temperature dependence on population density dTAVG/dPD by computing 

the average 2-station temperature and population density differences, and binning those averages 

into six population density bins. As a simple qualitative example, urban locations average 

warmer than suburban locations, and suburban warmer than rural, but with different magnitudes. 

Once the dTAVG/dPD values are computed, curves of TUHI vs. PD can be constructed. We use six 

classes of population density ranging from heavily populated to near wilderness, in 22 historical 

periods between 1880 and 2020. We tried as many as 20+ classes of population density, but the 

results did not substantially depend upon this choice, so we settled on six as the minimum 

number to mostly capture the nonlinear relationship between TAVG and PD. We admit this 

methodology is heuristic, and a more objectively-chosen class definition scheme might produce 

somewhat better results. We have found that still fewer classes might be necessary if the method 

is extended to non-U.S. regions where there are fewer stations in sufficiently close proximity to 

one other to allow meaningful regression analysis, otherwise the regression coefficients become 

too noisy to construct meaningful curves of TUHI vs PD. 

Specifically, we performed both ordinary least squares (OLS) linear regressions and Deming 

regressions (Deming, 1943) between 2-station differences in monthly average air temperature for 

the historical periods in Table 2 (covering 1880-2020) from the GHCN monthly Version 4 raw 

data (Menne et al., 2018) and 1/12th degree grid (~10x10 km) population density from the 

HYDE 3.3 dataset (Goldewijk et al., 2017) to estimate dTAVG/dPD regression coefficients. 

Regressions are done separately for different classes of 2-station average PD, and a zero 

intercept is not assumed in the regressions since we are estimating the local slopes along the T vs 

PD curve, which is nonlinear. The proportion of stations assigned to each of the six 2-station 

average PD classes (33%, 30%, 20%, 12%, 4.5% and 0.5%) was meant to capture the functional 

nonlinearity across a full range of PD values while keeping the regression t-statistics relatively 

high in all classes. These proportions were used for all subsequent regressions. As discussed 

below, Deming regression is one method to adjust for low biases in the regression coefficient 
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that result from errors in the independent variable (in this case, population density). The HYDE 

population data is reported every ten years between 1880 and 1950, and then every year until 

2023, and for each station location we interpolate those reported values in the decadal data to 

yearly time resolution using Hermite polynomial interpolation. We also used the Global Human 

Settlement (GHS-POP, Freire et al., 2016) population dataset, available every five years from 

1975 to 2020, in order to compare to the HYDE PD data for the purpose of estimating PD errors 

necessary for the Deming regressions.  

Stations included in the matchups had to be separated by not more than 120 km in distance 

and 250 m in elevation. Larger separations would lead to more station pairs to include in the 

regressions, but at the expense of adding more noise since weather conditions (rain, clouds, 

synoptic temperature variations, elevation effects) differ more at greater separations. Smaller 

separations lead to less weather noise, but fewer station pairs. The choice of 120 km and 250 m 

was made after some experimentation, but should not be considered to be optimized. We then 

apply these dTAVG/dPD relationships to each station’s PD history (dPD/dt) to estimate the UHI 

effect on temperature over time (Eq. 1), which can be compared to temperature trends calculated 

from the GHCN data. 

3. Results

a. Computations of dTAVG/dPD

As an example, from one of the 22 historical periods, the resulting dTAVG/dPD regression 

statistics for 1975 are shown in Table 1. Note that each of the six classes of 2-station average 

population density results in a positive regression coefficient, in decreasing magnitude as PD 

increases. This is evidence of the nonlinear relationship between population and temperature 

described by Oke (1973) and others. 
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PD 

Class 

Number of 

2-Station Pairs

(N) 

/Fraction in Class 

Correl. 

Coeff. 

OLS 

Regression 

Coeff. 

(dTAVG/dPD) 

Deming 

Regression 

Coeff. 

(dTAVG/dPD) 

2-station

Average PD 

& Range 

(persons km-2) 

OLS 

t-statistic

1 71,175/33.0% 0.110 0.00554 0.00679 17.4 (0.005 to 41) 29.5 

2 64,704/30.0% 0.177 0.00215 0.00254 76.3 (41 to 125) 45.9 

3 43,136/20.0% 0.226 0.00118 0.00132 201.5 (125 to 314) 48.3 

4 25,882/12.0% 0.187 0.00050 0.00056 497.0 (314 to 859) 30.7 

5 9,706/4.5% 0.345 0.00034 0.00037 1,496.5 (859 to 3,798) 36.2 

6 1,076/0.5% 0.734 0.00012 0.00012 6,002.3 (3,798 to 12,962) 

12962

35.4 

Table 1. Example OLS and Deming linear regression results between CONUS 2-station 

differences in raw GHCN temperature and population density for June, July, and August in just 

one of the 22 historical periods, 1975. Six classes of 2-station average population density 

regression results including number of station pairs N, Pearson correlation coefficient, OLS and 

Deming regression coefficient estimates of dTAVG/dPD, and t-statistic of the OLS regression. The 

regression error statistics (t-statistics) in the last column are very much larger than 2 (the 

commonly accepted value for statistical significance), but are likely overestimated since the 2-

station pairs are not all independent, often involving the same stations but at different times and 

in different combinations. 

The Deming regression results in Table 1 require some explanation. As can be seen in Table 

1, the correlation coefficients for the most rural population density classes are quite low, below 

0.2 for the first two classes. This naturally leads to concerns regarding the usefulness of the 

resulting regression coefficients, despite the large t-statistic values. For this reason, we also 

include the Deming regression results, which is one of several “errors in variables” methods for 

regressing particularly noisy data. As was originally addressed by Spearman (1904) the 

quantified relationship (regression slope) between two noisy variables will be biased toward zero 

(attenuated) to the extent that there is noise in the independent variable, in this case population 

density. In contrast, for OLS regression, increasing noise in the dependent variable (temperature) 

will lead to increased uncertainty in the regression coefficient, but the coefficient estimate will 

remain unbiased as long as the independent variable (PD) is noise-free. “Noise” in this case can 
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be either measurement errors in the variables, or sources of noise in either of the variables 

unrelated to UHI. “Errors in variables” methods for correcting for the attenuation of the 

regression coefficient have been addressed by Frost and Thompson (2000), and the issue has also 

been described in Fuller (1987) and Hutcheon et al. (2010). More recently, McKitrick (2023) 

addressed the possibility that errors in variables techniques can over-correct for regression 

attenuation if not carefully matched to the characteristics of the dataset in question.  

We employed Deming regression (Deming, 1943) to obtain unbiased estimates of the 

dTAVG/dPD regression coefficients, also listed in Table 1, which requires error estimates for both 

the 2-station differences in TAVG and PD. The TAVG difference errors were assumed to be the 

standard deviation of the OLS regression coefficient errors. For the PD difference error, we use 

the standard deviation of the differences in the independent GHS-POP and HYDE station PD 

estimates, at 10 km resolution. The resulting PD errors averaged from 68% of the most rural 

class average PD to 27% of the most urban class average PD.  

The resulting regression coefficients in Table 1 represent the local slopes of the T vs. PD 

curves, which as previously mentioned other researchers have determined to be nonlinear. A 

comparison of the OLS-based versus Deming-based results is shown for summer of 1975 in Fig. 

1, where (a) shows the regression coefficients as a function of 2-station average population 

density, and (b) shows the integration of the power law fits to those data across PD using the 

trapezoidal rule. 
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Fig. 1. (a) dTAVG/dPD regression coefficients for the six 2-station average population density 

classes in summer 1975 U.S. GHCN raw temperature data and their power-law regression fits 

(dotted lines) from Table 1, and (b) the resulting UHI warming curves from integrating the 

power law fits in (a) from zero to PD values from 1 to 10,000 persons km-2 using the trapezoidal 

rule. 

As seen in the log-log plot in Fig 1a, a power law relationship fits the regression coefficients 

very well for both OLS and Deming regressions, with 99.9% explained variance using 1975 data. 

This explained variance represents how well a power law relationship describes the increase in 

warming rate with population density across six PD classes, 
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dTAVG/dPD = c1PDc2 (2) 

The UHI curves in Fig. 1b are the result of integrating the power law relationship from PD=0 to 

PD=10,000. This was done by computing dTAVG/dPD at every integer value from 1 to 10,000 

using Eq. 2, linearly extrapolating a value at PD = 0 from the values at PD = 1 and PD = 2, and 

using the trapezoidal rule. In this case (1975 data) the Deming coefficients are larger than the 

OLS-based UHI coefficients in Fig. 1b, ranging from 35% larger at PD = 1 person km-2 to 9% 

larger at 10,000 persons km-2. This Deming coefficient increase over OLS results is due to the 

estimated errors in the population density data.  

The Deming regression results for all historical periods are shown in Table 2. The 

historical periods have differing lengths because of the large increase in number of available U.S. 

stations since the late 1800s. In order to have sufficient sample sizes to do regressions, the 

periods ranged from 21 years (1880-1900) to only 1 year since 1975. 
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Period # Years # 2-stn matchups c1 c2 Expl. Variance 

1880-1900 21 253,700 0.039857 -0.607542 96.3% 

1901-1910 10 514,315 0.034572 -0.584998 99.5% 

1911-1920 10 668,720 0.062109 -0.744012 99.9% 

1921-1930 10 736,305 0.049599 -0.690120 99.5% 

1931-1940 10 936,498 0.055038 -0.705208 99.9% 

1941-1945 5 587,211 0.063096 -0.729402 99.9% 

1946-1950 5 694,488 0.078626 -0.787744 99.5% 

1951-1955 5 919,057 0.043952 -0.658996 99.9% 

1957-1959 3 608,627 0.049027 -0.690737 99.9% 

1962-1964 3 665,355 0.042961 -0.653218 99.3% 

1967-1969 3 693,403 0.036253 -0.615864 98.4% 

1972-1974 3 650,879 0.036753 -0.620486 98.5% 

1975 1 215,679 0.048437 -0.687670 99.9% 

1980 1 193,373 0.029092 -0.577355 98.6% 

1985 1 178,725 0.037077 -0.646729 99.1% 

1990 1 194,725 0.031589 -0.620783 98.4% 

1995 1 188,106 0.035675 -0.635057 99.3% 

2000 1 227,403 0.033121 -0.650182 98.6% 

2005 1 279,171 0.029218 -0.628833 98.6% 

2010 1 299,496 0.042056 -0.656549 99.6% 

2015 1 255,165 0.035315 -0.638865 99.1% 

2020 1 218,201 0.036626 -0.661953 93.3% 
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Table 2. Power law coefficients (c1, c2) for 22 historical periods relating 2-station matchup 

Deming regression coefficients dTAVG/dPD vs. 2-station average PD. These are the power law 

equations used to estimate UHI warming at individual GHCN stations as a function of station 

population density. 

b. Year-over-year estimation of temperature trends

We desire to compute UHI effects only for those locations and times that have GHCN data. 

Unfortunately, many stations do not have continuous records of data from, say, 1880 to the 

present. To apply the spatial information on dTAVG /dPD derived from regression to the time 

domain to evaluate UHI temperature trends at GHCN stations we use year-over-year (YOY) 

changes in temperature and population density from all GHCN stations having at least two 

sequential years of temperature data. It should be obvious that for stations having a long period 

of record with no missing months of data, the resulting temperature trends (and interannual 

variability) will be identical using a YOY method or using the traditional multi-year annual cycle 

and anomaly calculation method. The advantage of using a YOY approach is that even stations 

with very short periods of operation can be included without the difficulty of determining an 

average annual cycle when very few years of data (possibly only two) are available from a 

station. The disadvantage is that some station data will be excluded by the YOY method when 

there are not two sequential years of data. An extreme (and unrealistic) example would be a 

station that only operated every other year from 1880 to the present day. In this case, none of the 

station data would be included in YOY calculations, while a traditional calculation of an annual 

cycle and anomalies (departures from the annual cycle) would include all the data, and anomalies 

would be computed for all years having data. 

To demonstrate the utility of the YOY method with observed data we compute contiguous 

U.S. area average summer (JJA) temperature variations between 1895 and 2023 using the 

adjusted (homogenized) GHCN station dataset, using all stations’ year-over-year temperature 

changes binned on a 1 deg. (~100 km) grid and then area-averaged. We use the homogenized 

(rather than raw) station data to allow comparison with NOAA’s spatially-analyzed 

homogenized data, thus establishing the validity of the YOY method. The result (Fig. 2) is 

extremely close to NOAA’s NClimDiv dataset calculation for the contiguous U.S. (Vose et al., 

2014), which averages station temperatures on a much finer grid (approximately 5 km), then 

averages those to the 344 U.S. climate divisions, then to the 48 contiguous states, then weights 
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the state-level averages based upon the relative sizes of the states. This shows that we can use the 

YOY method for our calculation of UHI time series and temperature trends using all available 

stations having two or more sequential years of data.  

Fig. 2. Year-over-year calculation of contiguous U.S. summer TAVG variations, 1895 to 2023, 

using the GHCN adjusted station dataset area averaged on a 1 deg. grid (red) versus the 

NClimDiv anomalies provided by NOAA (blue). Adjustments of coastal and border 1 deg. grid 

cells was made for partial cell coverage by large water bodies, Canada, and Mexico. The 

difference between the two datasets is shown in gray. The temperature trends (dashed lines) are 

nearly identical, the correlation between the YOY and NClimDiv time series is 0.997 (0.999 

since 1950), and the standard deviation of the monthly differences is 0.04 deg. C (0.02 deg. C 

since 1950). 

c. Population growth around GHCN stations since 1880 (dPD/dt)

We next document the population growth averaged across stations in different population 

density categories. That substantial population growth at GHCN temperature monitoring stations 

has occurred between 1880 and 2023 is demonstrated in Fig. 3 for four categories of station 

population density. The human settlement classification of the four PD categories in Fig. 3 is not 

well-defined in the literature, and we have chosen to label them as rural, peri-rural, suburban, 

and urban. In these plots an individual station can change PD category as its population grows 
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(or shrinks), and the station mix generally changes over time. These are averages across all 

stations meeting the PD criteria at different points in time, no matter where in the U.S. they are 

located. 

Fig. 3. Cumulative growth in population density 1880-2023 at U.S. temperature monitoring 

stations in four categories of station urbanization, calculated by summing the average year-on-

year increases in HYDE 3.3 dataset population density (PD/t) at individual GHCN stations 

having at least two years of record for station PD of (a) 0 to 10, (b) 10 to 100, (c) 100 to 1,000, 

and (d) greater than 1,000 persons km-2. 

The cumulative average YOY growth in station population density is evident for all four 

population categories ranging from rural (0 to 10 persons km-2) to urban (>1,000 persons km-2). 

Therefore, we expect UHI-related warming to occur in the GHCN raw dataset in all classes of 

population density.  

d. Dependence of UHI warming on population density in different historical periods
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The regression estimates of dTAVG/dPD using GHCN raw data from 1975 were listed in 

Table 1, and the resulting power law fits to the regression coefficients in Fig. 1a when integrated 

across population density lead to the urban heat island warming curves in Fig. 1b for 1975. This 

process was repeated for the 21 additional historical periods shown in Table 2. As in Fig. 1a, the 

relationships between dTAVG/dPD and PD were found to be approximately linear in a log-log 

plot, which supports a power law relationship in every historical period as evidenced by the high 

explained variances in Table 2. It is those power law equation fits to the Deming regression 

coefficients which are then used to calculate dTAVG/dPD for each station’s population density 

value (as in Fig. 1b) over time, depending upon what historical period is being addressed. 

Application of the power law equation coefficients in Table 2 to GHCN station 

population densities from the HYDE PD data in the 22 historical periods from 1880 to 2020 

results in the examples of net UHI warming as a function of population density shown in Fig. 4, 

with results from OLS and Deming regression shown separately. Importantly, these are not 

estimates of how UHI affects temperature over time at individual stations; they represent what a 

hypothetical station with no change in population density would indicate for a UHI effect on 

temperature over time. Note there is a general tendency for the UHI effect to weaken somewhat 

over the last 120 years (given the same population density). We speculate this is due to improved 

siting of thermometers over time in terms of the microclimate environment of the stations, an 

effect which is not captured by our use of population density at 10 km spatial resolution. 
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Fig. 4. Historical differences in the regression-based power law estimates of CONUS 

summertime UHI warming for three specific population densities ranging from peri-rural to 

urban center, for the historical periods listed in Table 2. The upper (green) curves are from 

Deming regression estimates of dTAVG/dPD while the lower (red) curves are from OLS 

regressions. Note that very few stations have population densities approaching 10,000 persons 

km-2, and so those plotted values are largely extrapolations of the power-law relationships from 

lower PD station values and should be considered uncertain. 

e. Cumulative TUHI warming in four PD classes, 1880-2020

Using the power law fits to the dTAVG/dPD data in Table 2 and applying them to the year-on-

year changes in PD at all CONUS GHCN stations, we next compute the cumulative TUHI effect 

since 1880 using Eq. 1 for four separate categories of station population density (Fig. 5). 
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Fig. 5. Cumulative year-over-year area-average UHI warming by CONUS station population 

density class from dTAVG/dPD calculated then applied to each station’s population density 

history. The population density class can change for stations as they urbanize. 

We see that TUHI warming was stronger in the early years than in later years. The total TUHI 

warming between 1880 and 2023 ranges from 0.14 deg. C for the least populated class to 1.4 

deg. C for the most densely populated class of station, and 0.29 deg. C averaged across all 

GHCN stations. The “All” curve is close to the 10-100 PD class because the GHCN station mix 

is dominated by rural and peri-rural stations. 

These TUHI estimates can be compared to the station year-on-year observed temperature 

changes from both raw and adjusted TAVG data averaged into 1 deg. grids (Table 3). It should be 

remembered that the different categories of station population density come from somewhat 

different geographic areas, with the eastern U.S. being over-represented in the high population 

density stations, and the western U.S. over-represented in the low population density station 

category. Because so few stations existed prior to 1895, we begin these comparisons in that year. 
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PD 

(persons km-2) 

1895-2023 TAVG trend 

(°C decade-1) 

Raw (Adjusted) 

1895-2023 TUHI trend 

(°C decade-1) 

[TUHI trend]/[TAVG trend] 

Raw (Adjusted) 

0.1 to 10 +0.075 (+0.067) +0.006 8.2% (7.0%) 

10 to 100 +0.049 (+0.056) +0.020 41.7% (34.7%) 

100 to 1,000 +0.065 (+0.083) +0.041 63.7% (57.2%) 

>1,000 +0.117 (+0.205) +0.078 66.9% (56.8%) 

All +0.072 (+0.073) +0.016 22.1% (21.8%) 

Table 3. CONUS raw and adjusted TAVG trends, and TUHI trends, 1895-2023, for four station 

population density categories. These four categories do not represent the same geographic areas 

due to unequal representation of different areas by different station population densities. 

For the most rural class of station, Fig. 6 shows that the 1895-2023 raw GHCN warming 

trend of +0.075 °C decade-1 is much larger than the TUHI trend (+0.006 °C decade-1), making the 

TUHI trend only about 8% of the observed TAVG trend. Thus, rural U.S. stations have a small UHI 

warming influence compared to the observed warming trend. The 6th order polynomial fit in Fig. 

6a (and following figures) is added to better visualize the observed warming up to the 1930s, 

cooling to the 1970s, and warming thereafter, structures which are not present in the UHI 

warming curves. 
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Fig. 6. CONUS area averages of cumulative year-on-year temperature departures from 1895 

values in (a) summer (JJA) GHCN raw TAVG and calculated TUHI warming from dTAVG/dPD 

calculations in Fig. 4 applied to station population density histories (Eq. 1), and (b) the number 

of 1 deg grid cells having station data for the 0.1 to 10 persons km-2 (rural) population density 

category. The TAVG (raw) curve in (a) has been vertically offset so that its linear trend line meets 

the TUHI value in 1895. Also shown in (a) is a 6th order polynomial fit to the TAVG data. 

We conclude that the most rural stations have little spurious warming from UHI effects, at least 

as quantified using population density as a proxy for urbanization.  
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For the next larger population density category (peri-rural, 10 to 100 persons km-2), Fig. 7 

shows a substantially larger proportion (42%) of the raw TAVG trend (+0.049 °C decade-1) being 

accounted for by the UHI trend (+0.020 °C decade-1). Note, however, that the observed warming 

since the 1970s diverges from the UHI warming curve, suggesting that the observed warming 

trend since the 1970s has relatively little influence from the UHI effect. This also means that 

warming from 1895 to the 1970s can be completely explained by the UHI effect, as seen in Fig. 

7a. 

 Fig. 7. As in Fig. 6, but for the 10 to 100 persons km-2 (peri-rural) population density 

category. 
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For the 100-1,000 persons km-2 (suburban) category, Fig. 8 shows a larger raw TAVG 

warming trend (+0.065 °C decade-1), with a still larger proportion (64%) being accounted for by 

the UHI trend (+0.041 °C decade-1). Thus, the UHI effect is a substantial fraction of the 

centennial-scale warming observed in the raw temperature data. Again, however, the observed 

warming after the 1970s (as evidenced by the polynomial fit) is much larger than the UHI 

warming curve, suggesting little UHI influence on the raw temperature trend after the 1970s. In 

contrast, the observed warming from 1895 to the 1970s falls below the TUHI curve, indicating 

comparable magnitudes of net warming in the first two-thirds of the temperature record. 

Fig. 8. As in Fig. 6, but for the 100 to 1,000 persons km-2 (suburban) population density 

category. 
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In the fourth and final PD category, the urban category (>1,000 persons km-2, Fig. 9) has 

relatively few stations, and so represents only a small portion of the U.S. But for those urban 

stations the TUHI warming trend (+0.078 °C decade-1) is a large fraction (67%) of the observed 

raw warming trend (+0.117 °C decade-1). The net TUHI warming amounts to about 1.1 deg. C 

over the period 1895-2023, and the TUHI curve does not depart substantially from the polynomial 

fit to the raw temperature data until after 2000. This suggests that UHI effects should be 

considered and included when discussing unusually warm summer temperatures in urban areas. 

Fig. 9. As in Fig. 6, but for the >1,000 persons km-2 population density category. 
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Finally, we can use all the available stations (Fig. 10) to provide some idea of how much of 

the summertime CONUS warming between 1895 and 2023 in the raw GHCN data might be 

explained by the UHI effect. 

Fig. 10. As in Fig, 6, but for all stations. Other than an offset for display purposes, the TAVG 

data in (a) are the same as in Fig. 2. The number of gridpoints is not the sum of those in Figs. 6 

through 9 because gridpoints often have more than one population class of station represented. 
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Since the CONUS station mix is dominated by rural and peri-rural stations, the strong UHI 

effects seen in the two highest population density categories (Figs. 8 and 9) are reduced in the 

all-station average, leading to the CONUS-average TUHI trend of +0.016 °C decade-1, which is 

22% of the observed trend (+0.072 °C decade-1) in the raw data. These results can be compared 

to the Hausfather et al. (2013) analysis of the homogenized temperature data during 1895-2010 

which found that “urbanization accounts for 14–21% of the rise in unadjusted minimum 

temperatures since 1895 and 6–9% since 1960”. 

4. Summary and Discussion

A novel method is presented for calculating the multi-station average urban heat island effect

on surface air temperatures based upon raw (non-homogenized) GHCN station TAVG data and 

population density data at ~10x10 km resolution using closely spaced station pairs. The 

sensitivity of monthly station average air temperature to differences in CONUS GHCN station 

population density (dTAVG/dPD) for stations between 1880 and 2020 for the months of June, 

July, and August is estimated using regression between station-pair temperature and population 

differences in six separate classes of 2-station average population density. Every one of the six 

regressions in all 22 historical periods analyzed produce positive dTAVG/dPD relationships (Table 

2), resulting in a significant UHI signal in the GHCN data when averaged over all U.S. stations. 

As reported by Oke (1973) and others, we find the relationship between UHI and population to 

be nonlinear, with the greatest temperature sensitivity to population change at the lowest 

population densities (Fig. 1). This suggests that small absolute increases in population density at 

rural locations have potentially non-trivial impacts on temperature. 

For a hypothetical time-invariant population density, we find that spatial UHI effects were 

somewhat stronger in the earlier decades and gradually weaken over time, especially at the more 

urban locations.  We speculate this is due to better siting of thermometers over time which 

reduces microclimate effects on the thermometer measurements, an effect that is not captured by 

our use of low-resolution (~10x10 km) population density data, although other explanations are 

also possible. 

When GHCN stations are grouped into four general categories of station population density 

(0.1 to 10, 10 to 100, 100 to 1,000, and over 1,000 persons km-2) we find average population 

increases since 1880 in all four categories. When the calculated dTAVG/dPD sensitivity 

Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-23-0199.1.Unauthenticated | Downloaded 05/26/25 10:26 AM UTC



26 

relationships are applied to the station population changes over time using Eqs. (1) and (2), the 

cumulative TUHI warming from 1880 to 2023 ranges from 0.14 °C for the most rural category of 

station (0.1 to 10 persons km-2) to 1.40 °C for the most densely populated urban locations 

(>1,000 persons km-2), with an all-station area average net UHI warming of 0.29 °C. The 

resulting TUHI linear trends (1895-2023) range from 8% of the TAVG trends for the most rural 

category (+0.006 versus +0.075 °C decade-1) to 67% of the TAVG temperature trend for the urban 

class (+0.078 versus +0.117 °C decade-1). Averaged across all stations, the TUHI linear trend of 

+0.016 °C decade-1 is 22% of the observed raw TAVG trend of +0.072 °C decade-1. These results

can be considered similar to those of Hausfather et al. (2013) who found that 14-21% of the 

warming in TMIN data during 1895-2010 was due to the UHI effect, with a lesser fraction during 

1960-2010. Since the UHI effect is known to be much stronger in daily minimum (TMIN) than 

maximum (TMAX) temperatures, our results for TAVG will underestimate the UHI effects on TMIN. 

Taken together, our results suggest the need for more thorough efforts to account for 

urbanization effects over time when calculating land-based temperature statistics from GHCN 

data, especially when dealing with stations having population density over 100 persons km-2 

(suburban and urban). This does not necessarily mean that urbanization effects should be 

removed from station data since they represent the actual temperatures experienced by a large 

fraction of the U.S. population which resides in urban areas. Instead, at a minimum, the reporting 

and significance of suburban and urban temperature statistics (e.g. record high temperatures) 

should take into account urbanization effects, in addition to large-scale climate change, when 

those statistics are discussed. While our method for estimation of station-average UHI warming 

is useful in its own right, its relationship to commonly reported temperature trends depends upon 

the question of whether the adjusted (homogenized) GHCN data already have spurious UHI 

warming effects on temperature trends mostly accounted for. For the period 1895-2023 the raw 

GHCN trend (+0.072 °C decade-1) is very close to the adjusted (homogenized) trend (+0.073 °C 

decade-1), from which one might infer little UHI adjustment to the homogenized GHCN dataset. 

But UHI effects on trends in the homogenized data can be offset by other adjustments, for 

example the time of observation (TOBs, Vose et al., 2003) adjustment, and station 

instrumentation and location changes. It is beyond the scope of this study to evaluate the relative 

sizes of these various adjustments since the homogenization algorithm makes no distinction 

between sources of discontinuities in the temperature data. We instead offer the current TUHI 
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estimates as a way to isolate and quantify average UHI effects, and we obtain magnitudes that 

exceed 50% of reported trends for non-rural population densities. While our estimates of UHI 

warming are similar to those of Hausfather et al. (2013) in terms of temperature trends (which 

are presumably largely removed in the homogenized data), our estimate of UHI impacts on rural 

temperature trends is a new feature which results from the strong nonlinearity of the relationship 

between temperature and population density. Thus, the common assumption that rural 

temperature trends are unaffected by UHI is not strictly true. 

Finally, it should be noted that our use of population density as a metric of urbanization is 

due to the ready availability of global gridded data, but it is also possible for increased UHI 

effects even after urban population densities have stabilized, due to expansion of built-up areas, 

paved surfaces, and energy use (Böhm, 1998). Thus, it is possible our estimates of TUHI warming 

based upon population density alone will underestimate the total UHI effect. 
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